Empirical Models of Pigweed (Amaranthusspp.) Interference in Soybean (Glycine max)

Author:

Dieleman Anita,Hamill Allan S.,Weise Stephan F.,Swanton Clarence J.

Abstract

Three empirical crop yield loss models were used to describe the interference of redroot pigweed and Powell amaranth populations with soybean. Data were obtained from field experiments conducted in 1992 and 1993. Pigweed densities of 0 to eight plants m−1were established within the soybean row. Pigweed sowing dates were selected so that weed seedling emergence coincided with VE, VC, and V2 soybean growth stages within the time frame of the critical weed-free period. The model incorporating pigweed density and time of emergence gave the best description of soybean yield loss in comparison to the two relative leaf area models. This model was fit to a combined data set of percent yield loss because parameter estimates did not differ among locations and years. Estimated soybean yield losses decreased from 16.4 to 0.5% with delayed pigweed emergence from 0 to 20 degree days. Leaf area of pigweed relative to soybean encompassed pigweed density and time of emergence. Relationship between relative leaf area and soybean yield loss was best described by the one-parameter model estimating a relative damage coefficient ‘q’ than the two-parameter model that also estimated maximum expected yield loss. The relative damage coefficient ‘q’ decreased with later times of leaf area assessment but could be predicted with one leaf area observation. Empirical models that incorporate time of weed emergence represent a step toward improving predictions of yield loss. This is important for the selection of cost-effective weed control strategies.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3