Author:
Sunderland Shay L.,Burton James D.,Coble Harold D.,Maness Eleanor P.
Abstract
Laboratory experiments were conducted to determine the physiological mechanism of tall morningglory resistance to the experimental cotton herbicide DPX-PE350. Tall morningglory, a resistant species, was compared with entireleaf morningglory, a sensitive species, to evaluate inhibition at the site of action, the acetolactate synthase (ALS) enzyme (E.C.4.1.3.18), by DPX-PE350 as well as uptake, translocation, and metabolism of DPX-PE350. No differences were found between species in the concentration required to inhibit the ALS enzyme by 50% (I50), or in uptake and translocation of the herbicide. Tall morningglory metabolized the herbicide more rapidly than did entireleaf morningglory. Tall morningglory contained 3.6 and 1.4 times more metabolites of DPX-PE350 than did entireleaf morningglory 6 and 24 h after treatment, respectively. Tall morningglory produced anO-desmethyl metabolite from the 3,5-dimethoxypyrimidine moiety of DPX PE350 that was not found in entireleaf morningglory. These data suggest that the ability of tall morningglory to more rapidly metabolize DPX-PE350, possibly through the production of the pyrimidinyldesmethyl metabolite, may be the mechanism of resistance to DPX-PE350.
Publisher
Cambridge University Press (CUP)
Subject
Plant Science,Agronomy and Crop Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献