THREE FORMS OF PHYSICAL MEASUREMENT AND THEIR COMPUTABILITY

Author:

BEGGS EDWIN,COSTA JOSÉ FÉLIX,TUCKER JOHN V

Abstract

AbstractWe have begun a theory of measurement in which an experimenter and his or her experimental procedure are modeled by algorithms that interact with physical equipment through a simple abstract interface. The theory is based upon using models of physical equipment as oracles to Turing machines. This allows us to investigate the computability and computational complexity of measurement processes. We examine eight different experiments that make measurements and, by introducing the idea of an observable indicator, we identify three distinct forms of measurement process and three types of measurement algorithm. We give axiomatic specifications of three forms of interfaces that enable the three types of experiment to be used as oracles to Turing machines, and lemmas that help certify an experiment satisfies the axiomatic specifications. For experiments that satisfy our axiomatic specifications, we give lower bounds on the computational power of Turing machines in polynomial time using nonuniform complexity classes. These lower bounds break the barrier defined by the Church-Turing Thesis.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy,Mathematics (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machines that perform measurements;Theoretical Computer Science;2022-07

2. A model of systems with modes and mode transitions;Journal of Logical and Algebraic Methods in Programming;2022-06

3. The Power of Machines That Control Experiments;International Journal of Foundations of Computer Science;2022-02

4. Fundamental Physics and Computation: The Computer-Theoretic Framework;Universe;2022-01-11

5. East-West paths to unconventional computing;Progress in Biophysics and Molecular Biology;2017-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3