CHARACTER AND OBJECT

Author:

AVIGAD JEREMY,MORRIS REBECCA

Abstract

AbstractIn 1837, Dirichlet proved that there are infinitely many primes in any arithmetic progression in which the terms do not all share a common factor. Modern presentations of the proof are explicitly of higher-order, in that they involve quantifying over and summing overDirichlet characters, which are certain types of functions. The notion of a character is only implicit in Dirichlet’s original proof, and the subsequent history shows a very gradual transition to the modern mode of presentation.In this essay, we study the history of Dirichlet’s theorem with an eye towards understanding the methodological pressures that influenced some of the ontological shifts that occurred in nineteenth century mathematics. In particular, we use the history to understand some of the reasons that functions are treated as ordinary objects in contemporary mathematics, as well as some of the reasons one might want to resist such treatment.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy,Mathematics (miscellaneous)

Reference37 articles.

1. Pioneers of Representation Theory: Frobenius, Burnside, Schur, and Brauer

2. Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält;Dirichlet;Abhandlungen der königlich Preussischen Akademie der Wissenschaften,1837b

3. Wittgenstein's Lectures on the Foundations of Mathematics, Cambridge, 1939

4. Untersuchungen über die Theorie der complexen Zahlen;Dirichlet;Journal für die reine und angewandte Mathematik,1841

5. Sur la distribution des zéros de la fonction $\zeta(s)$ et ses conséquences arithmétiques

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Signs as a Theme in the Philosophy of Mathematical Practice;Handbook of the History and Philosophy of Mathematical Practice;2024

2. Signs as a Theme in the Philosophy of Mathematical Practice;Handbook of the History and Philosophy of Mathematical Practice;2023

3. PLANS AND PLANNING IN MATHEMATICAL PROOFS;The Review of Symbolic Logic;2020-06-29

4. Philosophy of mathematical practice: a primer for mathematics educators;ZDM;2020-05-06

5. Reliability of mathematical inference;Synthese;2020-01-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3