STRONG COMPLETENESS OF S4 FOR ANY DENSE-IN-ITSELF METRIC SPACE

Author:

KREMER PHILIP

Abstract

AbstractIn the topological semantics for modal logic, S4 is well-known to be complete for the rational line, for the real line, and for Cantor space: these are special cases of S4’s completeness for any dense-in-itself metric space. The construction used to prove completeness can be slightly amended to show that S4 is not only complete, but also strongly complete, for the rational line. But no similarly easy amendment is available for the real line or for Cantor space and the question of strong completeness for these spaces has remained open, together with the more general question of strong completeness for any dense-in-itself metric space. In this paper, we prove that S4 is strongly complete for any dense-in-itself metric space.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy,Mathematics (miscellaneous)

Reference23 articles.

1. Completeness of S4 for the Lebesgue Measure Algebra

2. Der Aussagenkalkül und die Topologie

3. A solution of the decision problem for the Lewis systems S2 and S4, with an application to topology

4. Lando T. , & Sarenac D . (2011) Fractal Completeness Techniques in Topological Modal Logic: Koch Curve, Limit Tree, and the Real Line. Available from: http://philosophy.berkeley.edu/file/698/FractalCompletenessTechniques.pdf.

5. Blok W . (1976). Varieties of Interior Algebras. Dissertation, University of Amsterdam.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. THE BAIRE CLOSURE AND ITS LOGIC;The Journal of Symbolic Logic;2024-01-05

2. Fixed Point Logics on Hemimetric Spaces;2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS);2023-06-26

3. Strong Completeness of S4 for the Real Line;Outstanding Contributions to Logic;2021-09-25

4. A Multi-Valued Simplified Halpern–Shoham–Moszkowski Logic for Gradable Verifiability in Reasoning about Digital Circuits;Electronics;2021-07-29

5. Exploring the Jungle of Intuitionistic Temporal Logics;Theory and Practice of Logic Programming;2021-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3