Abstract
Ogasawara and Yoshinaga [9] have shown that aB*-algebra is weakly completely continuous (w.c.c.) if and only if it is*-isomorphic to theB*(∞)-sum of algebrasLC(HX), where eachLC(HX)is the algebra of all compact linear operators on the Hilbert spaceHx.As Kaplansky [5] has shown that aB*-algebra isB*-isomorphic to theB*(∞)-sum of algebrasLC(HX)if and only if it is dual, it follows that a5*-algebraAis w.c.c. if and only if it is dual. We have observed that, if only certain key elements of aB*-algebraAare w.c.c, thenAis already dual. This observation constitutes our main theorem which goes as follows.A B*-algebraAis dual if and only if for every maximal modular left idealMthere exists aright identity modulo M that isw.c.c.
Publisher
Cambridge University Press (CUP)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Asymptotic commutants and zeros of von Neumann algebras.;MATHEMATICA SCANDINAVICA;1982-06-01
2. Compact actions on C*-algebras;Glasgow Mathematical Journal;1980-07
3. Compact actions on C*-algebras;Glasgow Mathematical Journal;1980-01
4. References;North-Holland Mathematical Library;1977
5. Weakly semi-completely continuous $A^{\ast}$-algebras;Illinois Journal of Mathematics;1972-12-01