Author:
DUGGAL B. P.,KUBRUSLY C. S.
Abstract
AbstractLet${\mathcal C}[{\mathcal X}]$be any class of operators on a Banach space${\mathcal X}$, and let${Holo}^{-1}({\mathcal C})$denote the class of operatorsAfor which there exists a holomorphic functionfon a neighbourhood${\mathcal N}$of the spectrum σ(A) ofAsuch thatfis non-constant on connected components of${\mathcal N}$andf(A) lies in${\mathcal C}$. Let${{\mathcal R}[{\mathcal X}]}$denote the class of Riesz operators in${{\mathcal B}[{\mathcal X}]}$. This paper considers perturbation of operators$A\in\Phi_{+}({\mathcal X})\Cup\Phi_{-}({\mathcal X})$(the class of all upper or lower [semi] Fredholm operators) by commuting operators in$B\in{Holo}^{-1}({\mathcal R}[{\mathcal X}])$. We prove (amongst other results) that if πB(B) = ∏mi= 1(B− μi) is Riesz, then there exist decompositions${\mathcal X}=\oplus_{i=1}^m{{\mathcal X}_i}$and$B=\oplus_{i=1}^m{B|_{{\mathcal X}_i}}=\oplus_{i=1}^m{B_i}$such that: (i) If λ ≠ 0, then$\pi_B(A,\lambda)=\prod_{i=1}^m{(A-\lambda\mu_i)^{\alpha_i}} \in\Phi_{+}({\mathcal X})$(resp.,$\in\Phi_{-}({\mathcal X})$) if and only if$A-\lambda B_0-\lambda\mu_i\in\Phi_{+}({\mathcal X})$(resp.,$\in\Phi_{-}({\mathcal X})$), and (ii) (case λ = 0)$A\in\Phi_{+}({\mathcal X})$(resp.,$\in\Phi_{-}({\mathcal X})$) if and only if$A-B_0\in\Phi_{+}({\mathcal X})$(resp.,$\in\Phi_{-}({\mathcal X})$), whereB0= ⊕mi= 1(Bi− μi); (iii) if$\pi_B(A,\lambda)\in\Phi_{+}({\mathcal X})$(resp.,$\in\Phi_{-}({\mathcal X})$) for some λ ≠ 0, then$A-\lambda B\in\Phi_{+}({\mathcal X})$(resp.,$\in\Phi_{-}({\mathcal X})$).
Publisher
Cambridge University Press (CUP)
Reference16 articles.
1. Upper-lower and left-right semi-Fredholmness;Kubrusly;Bull. Belg. Math. Soc. Simon Stevin,2016
2. Upper and lower Fredholm spectra;Buoni;Proc. Amer. Math. Soc.,1977
3. A characterization of polynomially Riesz strongly continuous semigroups;Latrach;Comment. Math. Carolina,2006
4. On perturbation of operators with complemented range
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Range-kernel complementation;Studia Scientiarum Mathematicarum Hungarica;2018-09
2. A note on range-kernel uncomplementation;Demonstratio Mathematica;2017-10-26