Null hypersurfaces in 4-manifolds endowed with a product structure

Author:

Georgiou Nikos

Abstract

Abstract In a 4-manifold, the composition of a Riemannian Einstein metric with an almost paracomplex structure that is isometric and parallel defines a neutral metric that is conformally flat and scalar flat. In this paper, we study hypersurfaces that are null with respect to this neutral metric, and in particular we study their geometric properties with respect to the Einstein metric. Firstly, we show that all totally geodesic null hypersurfaces are scalar flat and their existence implies that the Einstein metric in the ambient manifold must be Ricci-flat. Then, we find a necessary condition for the existence of null hypersurface with equal nontrivial principal curvatures, and finally, we give a necessary condition on the ambient scalar curvature, for the existence of null (non-minimal) hypersurfaces that are of constant mean curvature.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference11 articles.

1. Almost paracomplex structures on 4-manifolds

2. On the geometry of spaces of oriented geodesics

3. The causal topology of neutral 4-manifolds with null boundary;Georgiou;New York J. Math.,2021

4. Spaces of geodesics of pseudo-Riemannian space forms and normal congruences of hypersurfaces

5. [7] Guilfoyle, B. , From CT Scans to 4-manifold topology via neutral geometry, In preparation.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3