Abstract
Let M be an n-dimensional connected submanifold in an mdimensional Euclidean space Em. Denote by δ the Laplacian of M associated with the induced metric. Then the position vector x and the mean curvature vector H of Min Em satisfyThis yields the following fact: a submanifold M in Em is minimal if and only if all coordinate functions of Em, restricted to M, are harmonic functions. In other words, minimal submanifolds in Emare constructed from eigenfunctions of δ with one eigenvalue 0. By using (1. 1), T. Takahashi proved that minimal submanifolds of a hypersphere of Em are constructed from eigenfunctions of δ with one eigenvalue δ (≠0). In [3, 4], Chen initiated the study of submanifolds in Em which are constructed from harmonic functions and eigenfunctions of δ with a nonzero eigenvalue. The position vector x of such a submanifold admits the following simple spectral decomposition:for some non-constant maps x0and xq, where A is a nonzero constant. He simply calls such a submanifold a submanifold of null 2-type.
Publisher
Cambridge University Press (CUP)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献