Null 2-type Chen surfaces

Author:

Li Shi-Jie

Abstract

Let M be an n-dimensional connected submanifold in an mdimensional Euclidean space Em. Denote by δ the Laplacian of M associated with the induced metric. Then the position vector x and the mean curvature vector H of Min Em satisfyThis yields the following fact: a submanifold M in Em is minimal if and only if all coordinate functions of Em, restricted to M, are harmonic functions. In other words, minimal submanifolds in Emare constructed from eigenfunctions of δ with one eigenvalue 0. By using (1. 1), T. Takahashi proved that minimal submanifolds of a hypersphere of Em are constructed from eigenfunctions of δ with one eigenvalue δ (≠0). In [3, 4], Chen initiated the study of submanifolds in Em which are constructed from harmonic functions and eigenfunctions of δ with a nonzero eigenvalue. The position vector x of such a submanifold admits the following simple spectral decomposition:for some non-constant maps x0and xq, where A is a nonzero constant. He simply calls such a submanifold a submanifold of null 2-type.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference8 articles.

1. Reduction of the codimension of an isometric immersion

2. Spherical chen surfaces which are mass-symmetric and of 2-type

3. Null $2$-type surfaces in $E^3$ are circular cylinders

4. Null 2-type surfaces in Em with parallel normalized mean curvature vector;Li;Math. J. Toyama Univ.,1994

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generalized null 2-type immersions in Euclidean space;Advances in Geometry;2018-01-01

2. Generalized Null 2-Type Surfaces in Minkowski 3-Space;Symmetry;2017-01-20

3. Some open problems and conjectures on submanifolds of finite type: recent development;Tamkang Journal of Mathematics;2014-03-30

4. Spherical Product Surfaces in E4;Analele Universitatii "Ovidius" Constanta - Seria Matematica;2012-05-01

5. Null 2-type submanifolds of the Euclidean space E5 with non-parallel mean curvature vector;Journal of Geometry;2007-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3