Multiplier systems for Hilbert's and Siegel's modular groups

Author:

Gundlach Karl-Bernhard

Abstract

The classical generalizations (already investigated in the second half of last century) of the modular group SL(2, ℤ) are the groups ГK = SL(2, o)(o the principal order of a totally real number field K, [K:ℚ]=n), operating, originally, on a product of n upper half-planes or, for n=2, on the product 1× of an upper and a lower half-plane by(where v(i), for vK, denotes the jth conjugate of v), and Гn = Sp(n, ℤ), operating on n={Z∣Z=X+iY∈ℂ(n,n),tZ=Z, Y>0} byNowadays ГK is called Hilbert's modular group of K and Гn Siegel's modular group of degree (or genus) n. For n=1 we have Г1= SL(2, ℤ). The functions corresponding to modular forms and modular functions for SL(2, ℤ) and its subgroups are holomorphic (or meromorphic) functions with an invariance property of the formJ(L, t) for fixed L (or J(M, Z) for fixed M) denoting a holomorphic function without zeros on ) (or on n). A function J;, defined on ℤK×or ℤn×n to be able to appear in (1.3) with f≢0, has to satisfy certain functional equations (see below, (2.3)–(2.5) for ГK, (5.7)–(5.9) for Гn) and is called an automorphic factor (AF) then. In close analogy to the case n=1, mainly AFs of the following kind have been used:with a complex number r, the weight of J, and complex numbers v(L), v(M). AFs of this kind are called classical automorphic factors (CAP) in the sequel. If r∉ℤ, the values of the function v on ГK (or Гn) depend on the branch of (…)r. For a fixed choice of the branch (for each L∈ГK or M∈Гn) the functional equations for J, by (1.4), (1.5), correspond to functional equations for v. A function v satisfying those equations is called a multiplier system (MS) of weight r for ГK (or Гn).

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference13 articles.

1. Modular Forms and Functions

2. 5. Gundlach K.-B. , Zusammenhänge zwischen Modulformen in einer und in zwei Variablen, Nachr. Akad. Wiss. Göttingen II: Math. Phys. Kl. (1965), 47–88.

3. Multiplikatorsysteme der symplektischen Thetagruppe

4. Bemerkungen über Multiplikatoren von Modulformen zu Kongruenzgruppen der Hilbert-Siegelschen Modulgruppe

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3