Author:
DUTERTRE NICOLAS,MOYA PÉREZ JUAN ANTONIO
Abstract
Abstract
Let
$f\,{:}\,(\mathbb R^n,0)\to (\mathbb R,0)$
be an analytic function germ with non-isolated singularities and let
$F\,{:}\, (\mathbb{R}^{1+n},0) \to (\mathbb{R},0)$
be a 1-parameter deformation of f. Let
$ f_t ^{-1}(0) \cap B_\epsilon^n$
,
$0 < \vert t \vert \ll \epsilon$
, be the “generalized” Milnor fiber of the deformation F. Under some conditions on F, we give a topological degree formula for the Euler characteristic of this fiber. This generalizes a result of Fukui.
Publisher
Cambridge University Press (CUP)
Reference13 articles.
1. [4] Dutertre, N. , Topology and geometry of real singularities, Adv. Stud. Pure Math. 68 (2016), School on Real and Complex Singularities in São Carlos (2012), pp. 1–40.
2. An Algebraic Formula for the Degree of a C ∞ Map Germ
3. On the local degree of a smooth map;Khimshiashvili;Soobshch. Akad. Nauk Gruz. SSR,1977
4. Neighborhoods of algebraic sets
5. On the topology of non-isolated real singularities