Author:
COSTA ANTONIO F.,IZQUIERDO MILAGROS
Abstract
AbstractUsing uniformization of Riemann surfaces by Fuchsian groups and the equisymmetric stratification of the branch locus of the moduli space of surfaces of genus 4, we prove its connectedness. As a consequence, one can deform a surface of genus 4 with automorphisms, i.e. symmetric, to any other symmetric genus 4 surface through a path consisting entirely of symmetric surfaces.
Publisher
Cambridge University Press (CUP)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Database of Group Actions on Riemann Surfaces;Springer Proceedings in Mathematics & Statistics;2023
2. On large prime actions on Riemann surfaces;Journal of Group Theory;2022-03-31
3. Limit points of the branch locus of
g;Advances in Geometry;2019-06-23
4. Geometry of the 1-skeleta of singular nerves of moduli spaces of Riemann surfaces;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2018-02-15
5. Topologically singular points in the moduli space of Riemann surfaces;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2017-10-23