Abstract
Let M(c) denote a 4n-dimensional quaternion space form of quaternion sectional curvature c, and let P(H) denote the 4n-dimensional quaternion projective space of constant quaternion sectional curvature 4. Let N be an n-dimensional Riemannian manifold isometrically immersed in M(c). We call N a totally real submanifold of M(c) if each tangent 2-plane of N is mapped into a totally real plane in M (c). B. Y. Chen and C. S. Houh proved in [1].
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献