Abstract
AbstractLet R be a complete intersection ring, and let M and N be R-modules. It is shown that the vanishing of ExtiR(M, N) for a certain number of consecutive values of i starting at n forces the complete intersection dimension of M to be at most n–1. We also estimate the complete intersection dimension of M*, the dual of M, in terms of vanishing of cohomology modules, ExtiR(M,N).
Publisher
Cambridge University Press (CUP)
Reference22 articles.
1. Syzygies and ext
2. Test modules for projectivity
3. A. Sadeghi , A note on the depth formula and vanishing of cohomology, preprint, 2012, arXiv:1204.4083 [math.AC].
4. Tensor products of modules and the rigidity of Tor
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Maximal Cohen–Macaulay tensor products;Annali di Matematica Pura ed Applicata (1923 -);2020-08-07
2. Homological dimensions of rigid modules;Kyoto Journal of Mathematics;2018-07-01