Abstract
AbstractEisenstein classes of Siegel varieties are motivic cohomology classes defined as pull-backs by torsion sections of the polylogarithm prosheaf on the universal abelian scheme. By reduction to the Hilbert–Blumenthal case, we prove that the Betti realization of these classes on Siegel varieties of arbitrary genus have non-trivial residue on zero-dimensional strata of the Baily–Borel–Satake compactification. A direct corollary is the non-vanishing of a higher regulator map.
Publisher
Cambridge University Press (CUP)
Reference17 articles.
1. Hilbert Modular Surfaces
2. Les classes d'Eisenstein des variétés de Hilbert-Blumenthal;Blottière;IMRN,2009
3. Fonctions zêtas des variétés de Siegel de dimension 3;Laumon;Astérisque,2005
4. Complexes pondérés sur les compactifications de Baily-Borel: Le cas des variétés de Siegel
5. p-adic elliptic polylogarithm, p-adic Eisenstein series and Katz measure;Bannai;Am. J. Math.,2010