Abstract
We study a class of rings which are closely related to principal ideal domains, and prove in particular that finitely-generated projective modules over such rings are free. Examples include the ring of Lipschitz quaternions; Z[a½] with d = —3 or d = —7; and any subring R of M2(Z) such that R ⊇ M2(pZ) for some prime number/? and R/M2(pZ) is a field with p2 elements.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献