Abstract
1. Let r(n) denote the number of representations of the natural number n as the sum of one square and three fifth powers of positive integers. A formal use of the circle method predicts the asymptotic relation
(1)$
\begin{equation*}
r(n) = \frac{\Gamma(\frac32)\Gamma(\frac65)^3}{\Gamma(\frac{11}{10})} {\mathfrak s}(n) {n}^\frac1{10} (1 + o(1)) \qquad (n\to\infty).
\end{equation*}
$
Here ${\mathfrak s}$(n) is the singular series associated with sums of a square and three fifth powers, see (13) below for a precise definition. The main purpose of this note is to confirm (1) in mean square.
Publisher
Cambridge University Press (CUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献