Abstract
AbstractFor an integer n ≥ 7, let Δ(n) denote the (2, 3, n)-triangle group, and let M(n) be the positive integer determined by the conditions that Δ(n) has a subgroup of index m for all m ≥ M(n), but no subgroup of index M(n) − 1. The main purpose of the paper is to obtain information (bounds, in some cases explicit values) concerning the function M(n) (cf. Theorem 1). We also show that Δ(n) is replete (i.e., has a subgroup of index m for every integer m ≥ 1) if, and only if, n is divisible by 20 or by 30 (see Theorem 2).
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献