Subrepresentations in the homology of finite covers of graphs

Author:

Flamm Xenia

Abstract

AbstractLet $p \;:\; Y \to X$ be a finite, regular cover of finite graphs with associated deck group $G$ , and consider the first homology $H_1(Y;\;{\mathbb{C}})$ of the cover as a $G$ -representation. The main contribution of this article is to broaden the correspondence and dictionary between the representation theory of the deck group $G$ on the one hand and topological properties of homology classes in $H_1(Y;\;{\mathbb{C}})$ on the other hand. We do so by studying certain subrepresentations in the $G$ -representation $H_1(Y;\;{\mathbb{C}})$ .The homology class of a lift of a primitive element in $\pi _1(X)$ spans an induced subrepresentation in $H_1(Y;\;{\mathbb{C}})$ , and we show that this property is never sufficient to characterize such homology classes if $G$ is Abelian. We study $H_1^{\textrm{comm}}(Y;\;{\mathbb{C}}) \leq H_1(Y;\;{\mathbb{C}})$ —the subrepresentation spanned by homology classes of lifts of commutators of primitive elements in $\pi _1(X)$ . Concretely, we prove that the span of such a homology class is isomorphic to the quotient of two induced representations. Furthermore, we construct examples of finite covers with $H_1^{\textrm{comm}}(Y;\;{\mathbb{C}}) \neq \ker\!(p_*)$ .

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference10 articles.

1. Arithmetic quotients of the mapping class group

2. Über das verhalten der integrale 1. gattung bei automorphismen des funktionenkörpers

3. Simple closed curves, finite covers of surfaces, and power subgroups of Out(Fn)

4. [8] Marché, J. , Homology generated by lifts of simple curves. 2012. Available at https://mathoverflow.net/questions/86894 (accessed 9 July 2020).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3