A Pirashvili-type theorem for functors on non-empty finite sets

Author:

Powell Geoffrey,Vespa Christine

Abstract

AbstractPirashvili’s Dold–Kan type theorem for finite pointed sets follows from the identification in terms of surjections of the morphisms between the tensor powers of a functor playing the role of the augmentation ideal; these functors are projective. We give an unpointed analogue of this result: namely, we compute the morphisms between the tensor powers of the corresponding functor in the unpointed context. We also calculate the Ext groups between such objects, in particular showing that these functors are not projective; this is an important difference between the pointed and unpointed contexts. This work is motivated by our functorial analysis of the higher Hochschild homology of a wedge of circles.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference12 articles.

1. Homology of FI-modules

2. [4] Loday, J.-L. , Cyclic homology, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, 2nd edition (Springer-Verlag, Berlin, 1998), Appendix E by María O. Ronco, Chapter 13 by the author in collaboration with Teimuraz Pirashvili.

3. Hodge decomposition for higher order Hochschild homology

4. Extensions between functors from free groups

5. Hochschild-Pirashvili homology on suspensions and representations of Out(F_n)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3