Author:
SMOKTUNOWICZ AGATA,YOUNG ALEXANDER A.
Abstract
AbstractWe show that over every countable algebraically closed field $\mathbb{K}$ there exists a finitely generated $\mathbb{K}$-algebra that is Jacobson radical, infinite-dimensional, generated by two elements, graded and has quadratic growth. We also propose a way of constructing examples of algebras with quadratic growth that satisfy special types of relations.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献