Author:
Akhavizadegan M.,Jordan D. A.
Abstract
The main object of study in this paper is the quantized Weyl algebra which arises from the work of Maltsiniotis [10] on noncommutative differential calculus. This algebra has been studied from the point of view of noncommutative ring theory by various authors including Alev and Dumas [1], the second author [9], Cauchon [3], and Goodearl and Lenagan [5]. In [9], it is shown that has n normal elements zi and, subject to a condition on the parameters, the localization obtained on inverting these elements is simple of Krull and global dimension n. It is easy to show that each of these normal elements generates a height one prime ideal and that these are all the height one prime ideals of . The purpose of this paper is to determine, under a stronger condition on the parameters, all the prime ideals of and to compare the prime spectrum with that of a related algebra . This algebra has more symmetric defining relations than those of but it shares the same simple localization which again is obtained by inverting n normal elements zi. Like the alternative algebra can be regarded as an algebra of skew differential (or difference) operators on the coordinate ring of quantum n-space.
Publisher
Cambridge University Press (CUP)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献