Author:
Bell Allen D.,Goodearl K. R.
Abstract
It is well known that for finite dimensional algebras, “bounded representation type” implies “finite representation type”; this is the assertion of the First Brauer-Thrall Conjecture (hereafter referred to as Brauer-Thrall I), proved by Roiter [26] (see also [23]). More precisely, it states that if R is a finite dimensional algebra over a field k, such that there is a finite upper bound on the k-dimensions of the finite dimensional indecomposable right R-modules, then up to isomorphism R has only finitely many (finite dimensional) indecomposable right modules. The hypothesis and conclusion are of course left-right symmetric in this situation, because of the duality between finite dimensional left and right R-modules, given by Homk(−, k). Furthermore, it follows from finite representation type that all indecomposable R modules are finite dimensional [25].
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献