Author:
Grandjean Vincent,Oliveira Roger
Abstract
Abstract
Let
$\sigma _q \,:\,{{\mathbb{R}}^q} \to{\textbf{S}}^q\setminus N_q$
be the inverse of the stereographic projection with center the north pole
$N_q$
. Let
$W_i$
be a closed subset of
${\mathbb{R}}^{q_i}$
, for
$i=1,2$
. Let
$\Phi \,:\,W_1 \to W_2$
be a bi-Lipschitz homeomorphism. The main result states that the homeomorphism
$\sigma _{q_2}\circ \Phi \circ \sigma _{q_1}^{-1}$
is a bi-Lipschitz homeomorphism, extending bi-Lipschitz-ly at
$N_{q_1}$
with value
$N_{q_2}$
whenever
$W_1$
is unbounded.
As two straightforward applications in the polynomially bounded o-minimal context over the real numbers, we obtain for free a version at infinity of: (1) Sampaio’s tangent cone result and (2) links preserving re-parametrization of definable bi-Lipschitz homeomorphisms of Valette.
Publisher
Cambridge University Press (CUP)
Reference18 articles.
1. On Lipschitz rigidity of complex analytic sets;Fernandes;J. Geom. Anal.,2020
2. The link of the germ of a semi-algebraic metric space;Valette;Proc. Am. Math. Soc.,2007
3. [10] Oliveira, R. , Equivalência assintótica forte e fraca de germes de funções semi-algébricas contínuas na origem e no infinito, PhD Thesis (Unversidade Federal do Ceará, 2022). Pdf available at https://repositorio.ufc.br/handle/riufc/68390
4. Über partielle und totale differenzierbarkeit von funktionen mehrerer variabeln und über die transformation der doppelintegrale;Rademacher;Math. Ann.,1919
5. [18] Valette, G. , On Subanalytic Geometry, Book, in preparation. A preliminary version is available at http://www2.im.uj.edu.pl/gkw/sub.pdf.