Abstract
AbstractIt is shown that if C1 and C2 are maximal abelian self-adjoint subalgebras (masas) of C*-algebras A1 and A2, respectively, then the completion C1 ⊗ C2 of the algebraic tensor product C1 ⊙ C2 of C1 and C2 in any C*-tensor product A1 ⊗βA2 is maximal abelian provided that C1 has the extension property of Kadison and Singer and C2 contains an approximate identity for A2. Examples are given to show that this result can fail if the conditions on the two masas do not both hold. This gives an answer to a long-standing question, but leaves open some other interesting problems, one of which turns out to have a potentially intriguing implication for the Kadison-Singer extension problem.
Publisher
Cambridge University Press (CUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. PERIODIC -GRAPH ALGEBRAS REVISITED;Journal of the Australian Mathematical Society;2015-04-20
2. A Dixmier–Douady theorem for Fell algebras;Journal of Functional Analysis;2011-03
3. The radial masa in a free group factor is maximal injective;Journal of the London Mathematical Society;2010-09-30