Author:
WEBER MICHEL JEAN GEORGES
Abstract
AbstractErdös and Zaremba showed that
$ \limsup_{n\to \infty} \frac{\Phi(n)}{(\log\log n)^2}=e^\gamma$
, γ being Euler’s constant, where
$\Phi(n)=\sum_{d|n} \frac{\log d}{d}$
.We extend this result to the function
$\Psi(n)= \sum_{d|n} \frac{(\log d )(\log\log d)}{d}$
and some other functions. We show that
$ \limsup_{n\to \infty}\, \frac{\Psi(n)}{(\log\log n)^2(\log\log\log n)}\,=\, e^\gamma$
. The proof requires a new approach. As an application, we prove that for any
$\eta>1$
, any finite sequence of reals
$\{c_k, k\in K\}$
,
$\sum_{k,\ell\in K} c_kc_\ell \, \frac{\gcd(k,\ell)^{2}}{k\ell} \le C(\eta) \sum_{\nu\in K} c_\nu^2(\log\log\log \nu)^\eta \Psi(\nu)$
, where C(η) depends on η only. This improves a recent result obtained by the author.
Publisher
Cambridge University Press (CUP)
Reference9 articles.
1. On a Generalozation of Euker's Function Φ(n
)
2. The arithmetical function
$\sum_{d|n} \frac{\log d}{d}$;Erdös;Demonstratio Math.,1972
3. Some asymptotic expressions in the theory of numbers;Gronwall;Trans. Amer. Math. Soc.,1912
4. Approximate formulas for some functions of prime numbers