Author:
JARDEN MOSHE,RAZON AHARON
Abstract
AbstractLet K be a global field, $\mathcal{V}$ a proper subset of the set of all primes of K, $\mathcal{S}$ a finite subset of $\mathcal{V}$, and ${\tilde K}$ (resp. Ksep) a fixed algebraic (resp. separable algebraic) closure of K with $K_\mathrm{sep}\{\subseteq}{\tilde K}$. Let Gal(K) = Gal(Ksep/K) be the absolute Galois group of K. For each $\mathfrak{p}\in\mathcal{V}$, we choose a Henselian (respectively, a real or algebraic) closure $K_\mathfrak{p}$ of K at $\mathfrak{p}$ in ${\tilde K}$ if $\mathfrak{p}$ is non-archimedean (respectively, archimedean). Then, $K_{\mathrm{tot},\mathcal{S}}=\bigcap_{\mathfrak{p}\in\mathcal{S}}\bigcap_{\tau\in{\rm Gal}(K)}K_\mathfrak{p}^\tau$ is the maximal Galois extension of K in Ksep in which each $\mathfrak{p}\in\mathcal{S}$ totally splits. For each $\mathfrak{p}\in\mathcal{V}$, we choose a $\mathfrak{p}$-adic absolute value $|~|_\mathfrak{p}$ of $K_\mathfrak{p}$ and extend it in the unique possible way to ${\tilde K}$. Finally, we denote the compositum of all symmetric extensions of K by Ksymm. We consider an affine absolutely integral variety V in $\mathbb{A}_K^n$. Suppose that for each $\mathfrak{p}\in\mathcal{S}$ there exists a simple $K_\mathfrak{p}$-rational point $\mathbf{z}_\mathfrak{p}$ of V and for each $\mathfrak{p}\in\mathcal{V}\smallsetminus\mathcal{S}$ there exists $\mathbf{z}_\mathfrak{p}\in V({\tilde K})$ such that in both cases $|\mathbf{z}_\mathfrak{p}|_\mathfrak{p}\le1$ if $\mathfrak{p}$ is non-archimedean and $|\mathbf{z}_\mathfrak{p}|_\mathfrak{p}<1$ if $\mathfrak{p}$ is archimedean. Then, there exists $\mathbf{z}\in V(K_{\mathrm{tot},\mathcal{S}}\cap K_\mathrm{symm})$ such that for all $\mathfrak{p}\in\mathcal{V}$ and for all τ ∈ Gal(K), we have $|\mathbf{z}^\tau|_\mathfrak{p}\le1$ if $\mathfrak{p}$ is archimedean and $|\mathbf{z}^\tau|_\mathfrak{p}<1$ if $\mathfrak{p}$ is non-archimedean. For $\mathcal{S}=\emptyset$, we get as a corollary that the ring of integers of Ksymm is Hilbertian and Bezout.
Publisher
Cambridge University Press (CUP)
Reference12 articles.
1. Abundance of hilbertian domains
2. Skolem density problems over large Galois extensions of global fields
3. Strong approximation theorem for absolutely integral varieties over PSC Galois extensions of global fields;Geyer;NY J. Math.,2017
4. Algebraic Patching
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献