Author:
Deaconescu Marian,Silberberg Gheorghe
Abstract
A group G is called Dedekindian if every subgroup ofG is normal in G.The structure of the finite Dedekindian groups is well-known [3, Satz 7.12]. They are either abelian or direct products of the form Q × A × B, where Q is the quaternion group of order 8, Ais abelian of odd order and exp(B) ≤ 2.
Publisher
Cambridge University Press (CUP)
Reference4 articles.
1. I gruppi che possono pensarsi come somma di tre loro sottigruppi;Scorza;Boll. Un. Mat. Ital.,1926
2. Endliche Gruppen I
3. Central automorphisms of finite groups
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献