Cone visual pigments of aquatic mammals

Author:

NEWMAN LUCY A.,ROBINSON PHYLLIS R.

Abstract

It has long been hypothesized that the visual systems of animals are evolutionarily adapted to their visual environment. The entrance many millions of years ago of mammals into the sea gave these new aquatic mammals completely novel visual surroundings with respect to light availability and predominant wavelengths. This study examines the cone opsins of marine mammals, hypothesizing, based on previous studies [Fasick et al. (1998) and Levenson & Dizon (2003)], that the deep-dwelling marine mammals would not have color vision because the pressure to maintain color vision in the dark monochromatic ocean environment has been relaxed. Short-wavelength-sensitive (SWS) and long-wavelength-sensitive (LWS) cone opsin genes from two orders (CetaceaandSirenia) and an additional suborder (Pinnipedia) of aquatic mammals were amplified from genomic DNA (for SWS) and cDNA (for LWS) by PCR, cloned, and sequenced. All animals studied from the orderCetaceahave SWS pseudogenes, whereas a representative from the orderSireniahas an intact SWS gene, for which the corresponding mRNA was found in the retina. One of the pinnipeds studied (harp seal) has an SWS pseudogene, while another species (harbor seal) appeared to have an intact SWS gene. However, no SWS cone opsin mRNA was found in the harbor seal retina, suggesting a promoter or splice site mutation preventing transcription of the gene. The LWS opsins from the different species were expressed in mammalian cells and reconstituted with the 11-cis-retinal chromophore in order to determine maximal absorption wavelengths (λmax) for each. The deeper dwelling Cetacean species had blue shifted λmaxvalues compared to shallower-dwelling aquatic species. Taken together, these findings support the hypothesis that in the monochromatic oceanic habitat, the pressure to maintain color vision has been relaxed and mutations are retained in the SWS genes, resulting in pseudogenes. Additionally, LWS opsins are retained in the retina and, in deeper-dwelling animals, are blue shifted in λmax.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3