Circadian control of photoreceptor outer segment membrane turnover in mice genetically incapable of melatonin synthesis

Author:

GRACE MICHAEL S.,CHIBA ATSUHIKO,MENAKER MICHAEL

Abstract

Vertebrate retinal photoreceptors periodically shed membrane from their outer segment distal tips; this material is phagocytosed and degraded by the retinal pigmented epithelium. Both a circadian oscillator and the daily light–dark cycle affect disk shedding, and the effects of both may be mediated by melatonin. To clarify melatonin's role in this process, we asked whether endogenous melatonin is required for rhythmic disk shedding in mouse retina. We analyzed disk shedding in two mouse strains: C3H, which produce melatonin in retina and pineal under the control of circadian oscillators, and C57BL/6, which do not produce melatonin. In cyclic light, both strains exhibited a robust cycle of disk phagosome content in the pigmented epithelium. Peak shedding occurred just after dawn, and trough levels occurred during the middle of the dark phase. In constant darkness, mice exhibited circadian rhythms of locomotor activity, the characteristics of which were similar between strains. Both strains also exhibited rhythmic disk shedding in constant darkness, although amplitudes of the rhythms were damped. Exogenous melatonin delivered once per day failed to reestablish high-amplitude cyclic shedding in mice held in constant darkness. Our results show that, while disk shedding in cyclic light is robustly rhythmic, neither rhythmic production of melatonin nor the circadian oscillator responsible for rhythmic locomotor activity is sufficient to drive high-amplitude rhythmic shedding in constant darkness. More importantly, melatonin is required neither for cyclic changes in the rate of disk shedding in cyclic light, nor for the circadian rhythm of disk shedding in constant darkness.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3