Effects of excitatory amino acids and their antagonists on the light response of luminosity and color-opponent horizontal cells in the turtle (Pseudemys scripta elegans) retina

Author:

Millar Thomas J.,Anderton Philip J.

Abstract

AbstractBoth kainic acid (KA) and N-methyl-d-aspartatic acid (NMDA) depolarize luminosity-type horizontal cells (L-type H cells) in normal turtle retina. The presence of both NMDA and non-NMDA receptors for excitatory amino acids (EAAs) on these cells was highlighted by an unusual effect of the noncompetitive NMDA-antagonist, MK-801. In retinas that had been exposed to MK-801, the action of NMDA was irreversibly altered to one of hyperpolarization, while the depolarizing effect of KA was unaltered. The aim of the present study was to further characterize these receptors on L-type H cells and to extend the investigation to color-opponent H cells (C-type H cells). Intracellular recording was used to study the effects of KA, NMDA, MK-801, the competitive NMDA antagonists, 2-amino-5-phosphonopentanoic acid (AP5) and 2-amino-7-phosphonoheptanoic acid (AP7), and the nonspecific EAA antagonist, kynurenic acid (KYN) on the light responses of L-type and C-type H cells in turtle retina. The effects of combinations of these drugs were also studied. In L-type H cells the agonists caused depolarization and loss of light response, KYN caused hyperpolarization and loss of light response, and MK-801, AP5 or AP7 had no direct effect. However, application of NMDA following MK-801, AP5 or AP7, but not KYN, caused hyperpolarization and loss of light response. The depolarizing effect of KA was unaltered by these antagonists. These data confirm the presence of an unusual NMDA receptor on L-type H cells. In the case of red\green C-type H cells, application of KA caused loss of responses to both red and green light, with loss of green responses preceding loss of red responses. NMDA initially removed responses to both red and green light. The most striking effect of NMDA was seen during early washout where the responses to red were reversed (hyperpolarizing). These responses eventually recovered their normal polarity. These results suggest that the depolarizing response of C-type H cells to red light is mediated by L-type H cells, but not via inhibition of the excitatory input from green cones to C-type H cells.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3