Differential timing for the appearance of neuronal and astrocytic β-adrenergic receptors in the developing rat visual cortex as revealed by light and electron-microscopic immunocytochemistry

Author:

Aoki Chiye

Abstract

AbstractThe developing cerebral cortex is likely to exhibit synaptic circuitries differing from those in adulthood, due to the asynchronous maturation of the various neurotransmitter systems. Two antisera directed against mammalian β-adrenergic receptors (βAR), βAR248 and βAR404, were used to characterize the laminar, cellular, and subcellular distributions of βAR in postnatally developing visual cortex of rats. The antigenic sites were the receptor's third intracellular loop for βAR248 and the C-terminus for βAR404. During week 1, most of the βAR404- and βAR248-immunoreactive sites were dendritic. Morphologically identifiable synapses were rare, even in layer 1: yet, semiquantitative analysis revealed that βAR404-immunoreactive synapses comprise half of those in layer 1. During week 2, the two antisera began to diverge in their immunoreactivity patterns. With βAR248, there was an overall decline in immunoreactivity, while with βAR404, there was an increase in immunoreactive sites, primarily due to labeled astrocytic processes that increased 200-fold in areal density by week 3. In contrast, the areal density of synaptic labeling by βAR404 barely doubled, in spite of the 30-fold increase in areal density of synapses. These results suggest that βAR undergo conformational changes during early postnatal periods, causing alterations in their relative antigenicity to the two antisera. Furthermore, the first 2 weeks appear to be characterized by modulation of earliest-formed synapses, and the subsequent phase is marked by addition of astrocytic responses that would be more diffuse temporally and spatially. Activation of βAR is recognized to increase visually evoked activity relative to spontaneous activity. Moreover, astrocytic βAR are documented to regulate extracellular concentrations of glutamate, ATP, and neurotrophic factors important for the formation of binocular connections. Thus, neuronal and astrocytic responses may, together and in tandem, facilitate strengthening of intracortical synaptic circuitry during early life.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3