Protective effects of remote ischemic conditioning against ischemia/reperfusion-induced retinal injury in rats

Author:

ZHANG XUXIANG,JIZHANG YUNNENG,XU XIAOYING,KWIECIEN TIMOTHY D.,LI NING,ZHANG YING,JI XUNMING,REN CHANGHONG,DING YUCHUAN

Abstract

AbstractLimb remote ischemic conditioning (LRIC) provides a physiologic strategy for harnessing the body’s endogenous protective capabilities against injury induced by ischemia–reperfusion in the central nervous system. The aim of the present study was to determine if LRIC played a role in protecting the retina from ischemia–reperfusion injury. A total of 81 adult male Sprague-Dawley rats were randomly assigned to sham and ischemia/reperfusion with or without remote LRIC arms. The retinal ischemic model was generated through right middle cerebral artery occlusion (MCAO) and pterygopalatine artery occlusion for 60 min followed by 1, 3, and 7 days of subsequent reperfusion. LRIC was conducted immediately following MCAO by tightening a tourniquet around the upper thigh and releasing for three cycles. Paraffin sections were stained with hematoxylin and eosin in order to quantify the number of cells in retinal ganglion cells (RGCs) layer throughout the duration of the study. Cellular expression of glial fibrillary acidic protein (GFAP) was detected and examined through immunohistochemistry. Protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) was also analyzed by Western blot techniques. Our study demonstrated that the loss of cells in RGC layer was attenuated by LRIC treatment at 3 and 7 days following reperfusion (P < 0.05). Immunohistochemistry studies depicted a gradual increase (P < 0.05) in GFAP levels from day 1 through day 7 following ischemia and subsequent reperfusion, whereas LRIC reduced GFAP levels at 1, 3, and 7 days postreperfusion. In addition, LRIC increased the expression of Nrf2 and HO-1 at day 1 and 3 following ischemia/reperfusion. This particular study is the first remote conditioning study applicable to retinal ischemia. Our results strongly support the position that LRIC may be used as a noninvasive neuroprotective strategy, which provides retinal protection from ischemia–reperfusion injury through the upregulation of antioxidative stress proteins, such as Nrf2 and HO-1.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3