Stimulus-dependent correlated firing in directionally selective retinal ganglion cells

Author:

AMTHOR FRANKLIN R.,TOOTLE JOHN S.,GRZYWACZ NORBERTO M.

Abstract

Synchronous spiking has been postulated to be a meta-signal in visual cortex and other CNS loci that tags neuronal spike responses to a single entity. In retina, however, synchronized spikes have been postulated to arise via mechanisms that would largely preclude their carrying such a code. One such mechanism is gap junction coupling, in which synchronous spikes would be a by-product of lateral signal sharing. Synchronous spikes have also been postulated to arise from common-source inputs to retinal ganglion cells having overlapping receptive fields, and thus code for stimulus location in the overlap area. On–Off directionally selective ganglion cells of the rabbit retina exhibit a highly precise tiling pattern in which gap junction coupling occurs between some neighboring, same-preferred-direction cells. Depending on how correlated spikes arise, and for what purpose, one could postulate that synchronized spikes in this system (1) always arise in some subset of same-direction cells because of gap junctions, but never in non-same-preferred-directional cells; (2) never arise in same-directional cells because their receptive fields do not overlap, but arise only in different-directional cells whose receptive fields overlap, as a code for location in the overlap region; or (3) arise in a stimulus-dependent manner for both same- and different-preferred-direction cells for a function similar to that postulated for neurons in visual cortex. Simultaneous, extracellular recordings were obtained from neighboring On–Off directionally selective (DS) ganglion cells having the same and different preferred directions in an isolated rabbit retinal preparation. Stimulation by large flashing spots elicited responses from DS ganglion-cell pairs that typically showed little synchronous firing. Movement of extended bars, however, often produced synchronous spikes in cells having similar or orthogonal preferred directions. Surprisingly, correlated firing could occur for the opposite contrast polarity edges of moving stimuli when the leading edge of a sweeping bar excited the receptive field of one cell as its trailing edge stimulated another. Pharmacological manipulations showed that the spike synchronization is enhanced by excitatory cholinergic amacrine-cell inputs, and reduced by inhibitory GABAergic inputs, in a motion-specific manner. One possible interpretation is that this synchronous firing could be a signal to higher centers that the outputs of the two DS ganglion cells should be “bound” together as responding to a contour of a common object.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3