Zebrafish visual sensitivity is regulated by a circadian clock

Author:

LI LEI,DOWLING JOHN E.

Abstract

We have recently developed a behavioral assay, based on the escape response of fish to a threatening object, to analyze quantitatively the visual sensitivity of zebrafish. During the course of dark adaptation, we measure the threshold light intensity required to evoke an escape response. Under a normal light–dark (LD) cycle, thresholds for both the cone and rod systems are considerably lower in late afternoon hours than in early morning hours. Over a period of 24 h, zebrafish are most sensitive to visual stimuli prior to light off and least sensitive prior to light on. Under conditions of constant illumination, this rhythm of visual sensitivity persists for several days but is gradually lost. In constant light (LL), the rhythm persists 1–2 days; thereafter, visual thresholds at all times of the day converge at a level similar to thresholds measured in late afternoon hours in control animals. In constant darkness (DD), the rhythm persists at least 5 days; thereafter, it dampens to a level about a half-log unit less sensitive to that measured in the late afternoon hours in control animals. These data suggest that visual sensitivity in zebrafish is regulated by an endogenous circadian clock which functions to decrease the visual sensitivity.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3