Photoreceptor inner segments in monkey and human retina: Mitochondrial density, optics, and regional variation

Author:

HOANG Q.V.,LINSENMEIER R.A.,CHUNG C.K.,CURCIO C.A.

Abstract

The present work quantifies aspects of photoreceptor structure related to mitochondria, inner segment dimensions, and optical properties, as a basis for furthering our understanding of rod and cone function. Electron-microscopic analyses were performed on the retina of one stumptail macaque (Macaca arctoides) to obtain stereological measurements of ellipsoid mitochondrial density, and sizes and shapes of outer and inner segments. In addition, the distribution of mitochondria and the optical properties of human foveal cones were examined with electron microscopy and Nomarski differential interference contrast (NDIC) imaging. Mitochondria comprised 74–85% of cone ellipsoids and 54–66% of rod ellipsoids in macaque. Ellipsoid volume increased with eccentricity by 2.4-fold for rods and more than 6-fold for cones over eccentricities to 12.75 mm, while the volume of the outer segment supported by the ellipsoid was essentially constant for both rods and cones. Per unit volume of outer segment, cones contained ten times as much mitochondria as rods. In human fovea, as in the rest of the retina, most cone mitochondria were located in the distal inner segment. In the foveal center, however, there are also mitochondria in the myoid, as well as in the outer fiber, proximal to the external limiting membrane (ELM). Analyses of the optical aperture of human foveal cones, the point at which their refractive index clearly differs from the extrareceptoral space, showed that it correlated well with the location of mitochondria, except in the foveal center, where the aperture appeared proximal to the ELM. While mitochondria have an important metabolic function, we suggest that the striking differences between rods and cones in mitochondrial content are unlikely to be determined by metabolic demand alone. The numerous cone mitochondria may enhance the waveguide properties of cones, particularly in the periphery.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3