Increased absolute light sensitivity in Himalayan mice with cold-induced ocular pigmentation

Author:

BALKEMA GRANT W.,MacDONALD SHANNON

Abstract

Controversy over the relationship between ocular pigmentation and absolute dark-adapted light sensitivity has persisted for over two decades. Previous electrophysiological experiments in hypopigmented mammals (mice, rats, rabbits) show increased thresholds in the dark-adapted state proportional to the deficit in ocular melanin. Animals with the least amount of ocular melanin have the most elevated thresholds. Dark-adapted thresholds in hypopigmented mice show similar threshold elevations in behavioral tests. The present study extends these findings to show that a specific increase in ocular pigmentation results in the converse effect, lowered absolute dark-adapted thresholds. The increase in ocular melanin was accomplished by keeping Himalayan mice in the cold (4°C) for 6 weeks. Himalayan mice (C57BL/6J cH/cH) were compared to black mice (C57BL/6J +/+) and albino mice (C57BL/6J c2J/c2J) after 6 weeks at either 4°C or 20°C in 12-h cycling light (<1 cd/m2). The Himalayan mice that were kept in the cold exhibited a 44% increase in ocular melanin compared to Himalayan mice kept at room temperature. Cold rearing did not effect ocular melanin or visual thresholds in control animals (black mice = 10−5.9 cd/m2 and albino mice = 10−4.4 cd/m2). In contrast, the Himalayan mice maintained at 4°C had thresholds of 10−5.7 cd/m2 compared to 10−5.1 cd/m2 for Himalayan mice kept at 20°C. This represents compelling evidence of a direct relationship between ocular melanin concentration and absolute dark-adapted light sensitivity.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3