Dynamics of orientation coding in area V1 of the awake primate

Author:

Celebrini Simona,Thorpe Simon,Trotter Yves,Imbert Michel

Abstract

AbstractTo investigate the importance of feedback loops in visual information processing, we have analyzed the dynamic aspects of neuronal responses to oriented gratings in cortical area V1 of the awake primate. If recurrent feedback is important in generating orientation selectivity, the initial part of the neuronal response should be relatively poorly selective, and full orientation selectivity should only appear after a delay. Thus, by examining the dynamics of the neuronal responses it should be possible to assess the importance of feedback processes in the development of orientation selectivity. The results were base on a sample of 259 cells recorded in two monkeys, of which 89% were visually responsive. Of these, approximately two-thirds were orientation selective. Response latency varied considerably between neurons, ranging from a minimum of 41 ms to over 150 ms, although most had latencies of 50–70 ms. Orientation tuning (defined as the bandwidth at half-height) ranged from 16 deg to over 90 deg, with a mean value of around 55 deg. By examining the selectivity of these different neurons by 10-ms time slices, starting at the onset of the neuronal response, we found that the orientation selectivity of virtually every neuron was fully developed at the very start of the neuronal response. Indeed, many neurons showed a marked tendency to respond at somewhat longer latencies to stimuli that were nonoptimally oriented, with the result that orientation selectivity was highest at the very start of the neuronal response. Furthermore, there was no evidence that the neurons with the shortest onset latencies were less selective. Such evidence is inconsistent with the hypothesis that recurrent intracortical feedback plays an important role in the generation of orientation selectivity. Instead, we suggest that orientation selectivity is primarily generated using feedforward mechanisms, including feedforward inhibition. Such a strategy has the advantage of allowing orientation to be computed rapidly, and avoids the initially poorly selective neuronal responses that characterize processing involving recurrent loops.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3