Biochemical and physiological evidence that histamine is the transmitter of barnacle photoreceptors

Author:

Callaway Joseph C.,Stuart Ann E.

Abstract

AbstractWe tested the hypothesis that histamine is the transmitter released by barnacle photoreceptors. Median and lateral ocelli were incubated with3H-histidine and found to synthesize3H-histamine, identified by high-voltage electrophoresis. Synthesis could be blocked by the histidine decarboxylase inhibitor (S)-α-fluoromethylhistidine. Histamine was applied to 1-cells either by superfusion or by pressure ejection from a pipette (100 µM or 1 mM histamine) positioned close to the I-cell's soma. When bath-applied at concentrations ranging from 5–100 µM, histamine hyperpolarized the I-cell in a dose-dependent fashion and increased its conductance. At 100 µM, histamine abolished the I-cell's response to light. The response to a pulse of pressure-applied histamine was a hyperpolarization whose amplitude was graded with dose (determined by the duration of the pulse). This response persisted in concentrations of Co2+and Cd2+that blocked synaptic transmission from the photoreceptors. Cimetidine, an antagonist of mammalian H2 receptors, markedly decreased the cell's responses both to HA and to light at 100 µM and blocked both responses at 1 mM. Pyrilamine and triprolidine, H1 antagonists, had a complex effect on the I-cell's responses to histamine and to light. Neither H1 nor H2 antagonists, nor histamine itself, affected the voltage or light responses recorded in the presynaptic terminal region, or any phase of calcium-dependent action potentials induced in the terminal in the presence of tetraethylammonium ion. Thus, biochemical, immunocytochemical, and physiological evidence suggests that HA is the transmitter from these photoreceptors to the I-cells. Although gammaaminobutyric acid (GABA) is also present in the photoreceptors, it did not affect the I-cell's responses to light or to histamine when bath-applied at 100 µM. Thus, GABA does not appear to modulate transmission from the photoreceptor to the I-cell.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3