Neuronal responses to orientation and motion contrast in cat striate cortex

Author:

KASTNER SABINE,NOTHDURFT HANS-CHRISTOPH,PIGAREV IVAN N.

Abstract

Responses of striate neurons to line textures were investigated in anesthetized and paralyzed adult cats. Light bars centered over the excitatory receptive field (RF) were presented with different texture surrounds composed of many similar bars. In two test series, responses of 169 neurons to textures with orientation contrast (surrounding bars orthogonal to the center bar) or motion contrast (surrounding bars moving opposite to the center bar) were compared to the responses to the corresponding uniform texture conditions (all lines parallel, coherent motion) and to the center bar alone. In the majority of neurons center bar responses were suppressed by the texture surrounds. Two main effects were found. Some neurons were generally suppressed by either texture surround. Other neurons were less suppressed by texture displaying orientation or motion (i.e. feature) contrast than by the respective uniform texture, so that their responses to orientation or motion contrast appeared to be relatively enhanced (preference for feature contrast). General suppression was obtained in 33% of neurons tested for orientation and in 19% of neurons tested for motion. Preference for orientation or motion contrast was obtained in 22% and 34% of the neurons, respectively, and was also seen in the mean response of the population. One hundred nineteen neurons were studied in both orientation and motion tests. General suppression was correlated across the orientation and motion dimension, but not preference for feature contrast. We also distinguished modulatory effects from end-zones and flanks using butterfly-configured texture patterns. Both regions contributed to the generally suppressive effects. Preference for orientation or motion contrast was not generated from either end-zones or flanks exclusively. Neurons with preference for feature contrast may form the physiological basis of the perceptual saliency of pop-out elements in line textures. If so, pop-out of motion and pop-out of orientation would be encoded in different pools of neurons at the level of striate cortex.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3