Contribution of linear mechanisms to the specification of local motion by simple cells in areas 17 and 18 of the cat

Author:

McLean J.,Raab S.,Palmer L. A.

Abstract

AbstractA reverse correlation technique, which permits estimation of three-dimensional first-order properties of receptive fields (RFs), was applied to simple cells in areas 17 and 18 of cat. Two classes of simple cells were found. For one class, the spatial and temporal RF characteristics were Separable, i.e. they could be synthesized as the product of spatial and temporal weighting functions. RFs in the other class were Inseparable, i.e. bright and dark subregions comprising each field were obliquely oriented in space-time. Based on a linear superposition model, these observations led to testable hypotheses: (1) simple cells with separable space-time characteristics should be speed but not direction selective and (2) simple cells with inseparable space-time characteristics should be direction selective and the optimal velocity of moving stimuli should be predictable from the slope of the oriented subregions. These hypotheses were tested by comparing responses to moving bars with those predicted by application of the convolution integral. Linear predictions accounted for waveforms of responses to moving bars in detail. For cells with oriented space-time characteristics, the preferred direction was always predicted correctly and the optimal speed was predicted quite well. Most cells with separable space-time characteristics were not direction selective as predicted. The major discrepancies between measured and predicted behavior were twofold. First, 8/32 cells with separable space-time RFs were direction selective. Second, predicted directional indices were weakly correlated with actual measurements. These conclusions hold for simple cells in both areas 17 and 18. The major difference between simple RFs in these areas is the coarser spatial scale seen in area 18. These results demonstrate a significant linear contribution to the speed and direction selectivity of simple cells in areas 17 and 18. Where additional, nonlinear mechanisms are inferred, they appear to act synergistically with the linear mechanism.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3