The action spectra of cone photoreceptors in the turtle (Mauremys caspica) retina

Author:

Perlman Ido,Itzhaki Aviran,Malik Shoshana,Alpern Mathew

Abstract

AbstractCone photoreceptors in the turtle retina are involved in intricate neuronal interactions with other retinal neurons that modify the responses of the cones to photons absorbed in their outer segments. Therefore, the action spectra of cones strongly depend upon the conditions of measurements. This study describes an attempt to derive the action spectra of turtle cones which are the least distorted by neuronal interactions. To achieve this goal, the photoresponses of cones and horizontal cells were recorded from the turtle retina under different conditions of adaptation using different patterns of the stimulating test flashes. The sensitivity action spectra, derived from small-amplitude (<1 mV) photoresponses, were strongly affected by the recording conditions indicating the contributions of multiple neuronal inputs. Action spectra, constructed from large criterion photoresponses, were less distorted by neuronal interactions and better described the spectral properties of the “isolated” cones. The action spectra of the hyperpolarizing inputs to chromaticity-type horizontal cells were derived by stimulating these cells with mixtures of a saturating red light and a monochromatic light of different wavelength and intensity. The action spectra were constructed from the intensity of the addend component needed to “pull down” the depolarizing response to the red component by a fixed criterion. These spectra, measured in red/green and yellow/blue C-type horizontal cells, are suggested to best represent the “isolated” M-cones and S-cones, respectively.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3