Sex-related differences in chromatic sensitivity

Author:

RODRÍGUEZ-CARMONA M.,SHARPE L.T.,HARLOW J.A.,BARBUR J.L.

Abstract

Generally women are believed to be more discriminating than men in the use of color names and this is often taken to imply superior color vision. However, if both X-chromosome linked color deficient males (∼8%) and females (<1%) as well as heterozygote female carriers (∼15%) are excluded from comparisons, then differences between men and women in red-green (RG) color discrimination have been reported as not being significant (e.g., Pickford, 1944; Hood et al., 2006). We re-examined this question by assessing the performance of 150 males and 150 females on the color assessment and diagnosis (CAD) test (Rodriguez-Carmona et al., 2005). This is a sensitive test that yields small color detection thresholds. The test employs direction-specific, moving, chromatic stimuli embedded in a background of random, dynamic, luminance contrast noise. A four-alternative, forced-choice procedure is employed to measure the subject's thresholds for detection of color signals in 16 directions in color space, while ensuring that the subject cannot make use of any residual luminance contrast signals. In addition, we measured the Rayleigh anomaloscope matches in a subgroup of 111 males and 114 females. All the age-matched males (30.8 ± 9.7) and females (26.7 ± 8.8) had normal color vision as diagnosed by a battery of conventional color vision tests. Females with known color deficient relatives were excluded from the study. Comparisons between the male and female groups revealed no significant differences in anomaloscope midpoints (p = 0.709), but a significant difference in matching ranges (p = 0.040); females on average tended to have a larger mean range (4.11) than males (3.75). Females also had significantly higher CAD thresholds than males along the RG (p = 0.0004), but not along the yellow-blue (YB) discrimination axis. The differences between males and females in RG discrimination may be related to the heterozygosity in X-linked cone photo pigment expression common among females.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3