Localization of nitric oxide synthase in the tree shrew retina

Author:

CAO QI-LIN,MURPHY HEATHER A.,PETRY HEYWOOD M.

Abstract

Nitric oxide (NO) is a novel neuronal messenger that likely influences retinal function by activating retinal guanylyl cyclase to increase levels of cGMP. In the present study, the localization of neuronal nitric oxide synthase (nNOS, Type I NOS) in the cone-dominant tree shrew retina was studied using NADPH-d histochemistry and nNOS immunocytochemistry. Both NADPH-d and nNOS-immunoreactivity (IR) labeled the inner segments of rods and the myoids of a regular subpopulation of cones, with their corresponding nuclei outlined. The labeled cone myoids were co-localized with a marker for short-wave-sensitive (SWS) cones (S-antigen) and also displayed the regular triangular packing and density (7%) characteristic of SWS cones in tree shrew and other mammalian retinas. These measures confirmed the identity of the labeled cones as SWS cones. Photoreceptor ellipsoids of all cones were strongly labeled by NADPH-d reactivity, but lacked nNOS-IR. Another novel finding in tree shrew retina was that both NADPH-d and nNOS-IR labeled Müller cells, which have not been labeled by nNOS-IR in other mammalian retinas. Consistent with findings in rod-dominant retinas, two types of amacrine cells at the vitreal edge of the inner nuclear layer and a subpopulation of displaced amacrine cells at the scleral edge of the ganglion cell layer were labeled by both NADPH-d and nNOS-IR. Processes of these labeled cells were seen to extend into the inner plexiform layer, where dense punctate label was seen, especially in the central sublamina. These results show that localization of NOS in the cone-dominant tree shrew retina shares some common properties with rod-dominant mammalian retinas, but also shows some species-specific characteristics. The new finding of nNOS localization in tree shrew SWS cones and rods, but not in other cones, raises interesting questions about the roles of NO in the earliest level of visual processing.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Physiological assessment of high glucose neurotoxicity in mouse and rat retinal explants;Journal of Comparative Neurology;2019-11-12

2. Retinal Glia;Colloquium Series on Neuroglia in Biology and Medicine: From Physiology to Disease;2015-03-12

3. Retinal thinning in tree shrews with induced high myopia: Optical coherence tomography and histological assessment;Vision Research;2011-02

4. Introduction;Müller Cells in the Healthy and Diseased Retina;2009-12-30

5. Relationship of the Optical Coherence Tomography Signal to Underlying Retinal Histology in the Tree Shrew (Tupaia belangeri);Investigative Opthalmology & Visual Science;2009-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3