Author:
Casini Giovanni,Brecha Nicholas C.
Abstract
AbstractVasoactive intestinal polypeptide (VIP) immunoreactive (IR) neurons in the rabbit retina constitute a population of wide-field amacrine cells. To better define this cell population, we examined the coexpression of VIP with other putative retinal transmitters or their biosynthetic enzymes, including γ-aminobutyric acid (GABA), tyrosine hydroxylase (TH), and somatostatin (SRIF). Colchicine-treated retinas were immersion fixed in 4% paraformaldehyde. The retinas were cut either perpendicular or parallel to the vitreal surface and processed by double-label immunofluorescence techniques using antibodies directed to VIP, GABA, TH, and SRIF. The immunoreactive staining patterns obtained with these antibodies were the same as those described in previous studies. GABA-IR neurons were localized to the proximal inner nuclear layer (INL) and ganglion cell layer (GCL) and processes were distributed throughout the inner plexiform layer (IPL). TH- and SR1F-IR neurons were sparsely distributed to the proximal INL and GCL, respectively. TH-IR processes ramified in laminae 1, 3, and 5, and SRIF-1R processes in laminae 1 and 5 of the IPL. Colocalization experiments showed that all VIP-IR neurons contain GABA immunoreactivity. In contrast, colocalization of VIP and TH or SRIF immunoreactivities was never observed. These results demonstrate that VIP-IR wide-field amacrines of the rabbit retina make up a neurochemically and morphologically distinct subpopulation of the GABA-IR amacrine cell population. Furthermore, VIP-IR amacrine cells constitute a distinct group with respect to the TH- and SRIF-IR amacrine cells.
Publisher
Cambridge University Press (CUP)
Subject
Sensory Systems,Physiology
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献