Generality of rod hue biases with smaller, brighter, and photopically specified stimuli

Author:

THOMAS LAURA P.,BUCK STEVEN L.

Abstract

This study tests the generality of previously demonstrated rod hue biases (red and blue biases at shorter wavelengths and a green bias at longer wavelengths) that cause the loci of the three spectral unique hues to shift to longer wavelengths. We found rod hue biases for 2-deg targets to be generally similar in magnitude and light-level dependence to those observed for 7.4-deg targets (the size most often studied) when measured at 7-deg eccentricity. The largest effects for both test sizes occurred at the lowest light levels tested, 1 log scotopic troland. All three rod hue biases were found with 0.6-deg targets, but were not reliably measurable at the lowest light levels and were reduced in magnitude and consistency across observers. The largest rod hue biases all occurred at the same scotopic light level, which corresponds to different photopic light levels for the three hue biases, because of differences in photopic and scotopic spectral sensitivity. This suggests that no single photopic light level will produce such large effects for all three rod hue biases. Finally, when the rod influence on a specific unique-hue locus was measured using photopically (rather than scotopically) constant stimuli, rod hue biases were still found but were more variable in magnitude and incidence across observers. We conclude that the rod hue biases we have previously described can be found with smaller stimuli, at somewhat higher light levels, and under photopically constant conditions, although our prior conditions tend to produce larger, more reliable rod hue biases.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vision under mesopic and scotopic illumination;Frontiers in Psychology;2015-01-22

2. Rod hue biases for foveal stimuli on CRT displays;Journal of the Optical Society of America A;2013-12-19

3. Rod hue biases produced on CRT displays;Journal of the Optical Society of America A;2012-01-09

4. Time course of rod influences on hue perception;Visual Neuroscience;2008-05

5. Foveal and extra-foveal influences on rod hue biases;Visual Neuroscience;2006-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3