Structural and functional composition of the developing retinogeniculate pathway in the mouse

Author:

JAUBERT-MIAZZA LISA,GREEN ERICK,LO FU-SUN,BUI KIM,MILLS JEREMY,GUIDO WILLIAM

Abstract

The advent of transgenic mice has made the developing retinogeniculate pathway a model system for targeting potential mechanisms that underlie the refinement of sensory connections. However, a detailed characterization of the form and function of this pathway is lacking. Here we use a variety of anatomical and electrophysiological techniques to delineate the structural and functional changes occurring in the lateral geniculate nucleus (LGN) of dorsal thalamus of the C57/BL6 mouse. During the first two postnatal weeks there is an age-related recession in the amount of terminal space occupied by retinal axons arising from the two eyes. During the first postnatal week, crossed and uncrossed axons show substantial overlap throughout most of the LGN. Between the first and second week retinal arbors show significant pruning, so that by the time of natural eye opening (P12–14) segregation is complete and retinal projections are organized into distinct eye-specific domains. During this time of rapid anatomical rearrangement, LGN cells could be readily distinguished using immunocytochemical markers that stain for NMDA receptors, GABA receptors, L-type Ca2+channels, and the neurofilament protein SMI-32. Moreover, the membrane properties and synaptic responses of developing LGN cells are remarkably stable and resemble those of mature neurons. However, there are some notable developmental changes in synaptic connectivity. At early ages, LGN cells are binocularly responsive and receive input from as many as 11 different retinal ganglion cells. Optic tract stimulation also evokes plateau-like depolarizations that are mediated by the activation of L-type Ca2+channels. As retinal inputs from the two eyes segregate into nonoverlapping territories, there is a loss of binocular responsiveness, a decrease in retinal convergence, and a reduction in the incidence of plateau potentials. These data serve as a working framework for the assessment of phenotypes of genetically altered strains as well as provide some insight as to the molecular mechanisms underlying the refinement of retinogeniculate connections.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3