Experimental retinal detachment in the cone-dominant ground squirrel retina: Morphology and basic immunocytochemistry

Author:

LINBERG KENNETH A.,SAKAI TSUTOMU,LEWIS GEOFFREY P.,FISHER STEVEN K.

Abstract

The cellular responses of the cone-dominant ground squirrel retina to retinal detachment were examined and compared to those in rod-dominant species. Retinal detachments were made in California ground squirrels. The retinas were prepared for light, electron, and confocal microscopy. Tissue sections were labeled with antibodies to cone opsins, rod opsin, glial fibrillary acidic protein (GFAP), vimentin, synaptophysin, cytochrome oxidase, and calbindin D 28K. Wax sections were probed with the MIB-1 antibody to detect proliferating cells. By 10 h postdetachment many photoreceptor cells in the ground squirrel already show structural signs of apoptosis. At 1 day many photoreceptors have collapsed inner segments (IS), yet others still have short stacks of outer segment discs. At 3 days there is a marked increase in the number of dying photoreceptors. Rod and medium-/long-wavelength opsins are redistributed in the cell membrane to their synaptic terminals. At 7 days photoreceptor cell death has slowed. Some regions of the outer nuclear layer (ONL) have few photoreceptor somata. IS remnants are rare on surviving photoreceptors. At 28 days these trends are even more dramatic. Retinal pigmented epithelium (RPE) cells do not expand into the subretinal space. The outer limiting membrane (OLM) appears flat and uninterrupted. Müller cells remain remarkably unreactive; they show essentially no proliferation, only negligible hypertrophy, and there is no increase in their expression of GFAP or vimentin. Horizontal cells show no dendritic sprouting in response to detachment. The speed and extent of photoreceptor degeneration in response to detachment is greater in ground squirrel than in cat retina—only a small number of rods and cones survive at 28 days of detachment. Moreover, the almost total lack of Müller cell and RPE reactivity in the ground squirrel retina is a significant difference from results in other species.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3