Author:
BLICKLE MANUEL,STÄBLER AXEL
Abstract
In analogy with the complex analytic case, Mustaţă constructed (a family of) Bernstein–Sato polynomials for the structure sheaf${\mathcal{O}}_{X}$and a hypersurface$(f=0)$in$X$, where$X$is a regular variety over an$F$-finite field of positive characteristic (see Mustaţă,Bernstein–Sato polynomials in positive characteristic, J. Algebra321(1) (2009), 128–151). He shows that the suitably interpreted zeros of his Bernstein–Sato polynomials correspond to the$F$-jumping numbers of the test ideal filtration${\it\tau}(X,f^{t})$. In the present paper we generalize Mustaţă’s construction replacing${\mathcal{O}}_{X}$by an arbitrary$F$-regular Cartier module$M$on$X$and show an analogous correspondence of the zeros of our Bernstein–Sato polynomials with the jumping numbers of the associated filtration of test modules${\it\tau}(M,f^{t})$provided that$f$is a nonzero divisor on$M$.
Publisher
Cambridge University Press (CUP)
Reference27 articles.
1. Eléments de géométrie algébrique IV, Quatrième partie;Grothendieck;Publ. Math. Inst. Hautes Études Sci.,1967
2. ${\scr D}$-modules arithmétiques. I. Opérateurs différentiels de niveau fini
3. Generators of $D$–modules in positive characteristic
4. D-module arithmétiques II: Descente par Frobenius;Berthelot;Mém. Soc. Math. Fr. (N.S.),2000
5. [26] Th. Stadnik , The lemma on $b$ -functions in positive characteristic, preprint, 2012,arXiv:1206.4039.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献