Abstract
Let$S$be a smooth minimal complex surface of general type with$p_{g}=0$and$K^{2}=7$. We prove that any involution on$S$is in the center of the automorphism group of$S$. As an application, we show that the automorphism group of an Inoue surface with$K^{2}=7$is isomorphic to$\mathbb{Z}_{2}^{2}$or$\mathbb{Z}_{2}\times \mathbb{Z}_{4}$. We construct a$2$-dimensional family of Inoue surfaces with automorphism groups isomorphic to$\mathbb{Z}_{2}\times \mathbb{Z}_{4}$.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献